Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
Rev. peru. med. exp. salud publica ; 39(4): [489-494], oct. 2022. ilus, tab
Article in Spanish | LILACS | ID: biblio-1424352

ABSTRACT

El loxoscelismo es ocasionado cuando el veneno dermonecrótico producido por las arañas del género Loxosceles, conocidas como «arañas violinistas», ingresa al organismo de una persona a través de su mordida. En México ocurre un subregistro de los casos de loxoscelismo por la ausencia de pruebas de laboratorio para su diagnóstico y la dificultad del cuadro clínico. El objetivo de este trabajo es describir un caso de loxoscelismo cutáneo ocasionado por mordedura de Loxosceles yucatana en un residente de Yucatán, México. El loxoscelismo cutáneo es el tipo más frecuente y menos severo. El presente caso se diagnosticó por medio de la sintomatología registrada en la historia clínica, la lesión inicial y la identificación de arañas L. yucatana. Este trabajo representa la primera descripción de un caso de loxoscelismo cutáneo con resolución favorable en Yucatán.


Loxoscelism occurs when the dermonecrotic venom produced by spiders of the genus Loxosceles, known as "violin spiders," enters a person's organism through their bite. In Mexico there is an underreporting of loxoscelism cases due to the absence of laboratory tests for its diagnosis and the complexity of the clinical picture. The aim of this paper is to describe a case of cutaneous loxoscelism caused by the bite of Loxosceles yucatana in a resident of Yucatan, Mexico. Cutaneous loxoscelism is the most frequent and less severe type. This case was diagnosed by means of the symptomatology registered in the medical records, the initial lesion, and the identification of L. yucatana spiders. This study represents the first description of a case of cutaneous loxoscelism with favorable outcome in Yucatan.


Subject(s)
Humans , Female , Spider Bites , Spider Venoms , Bites and Stings , Brown Recluse Spider , Poisons , Venoms , Wounds and Injuries
2.
J. venom. anim. toxins incl. trop. dis ; 28: e20210017, 2022. graf
Article in English | LILACS, VETINDEX | ID: biblio-1365075

ABSTRACT

Background: Acylpolyamines are one of the main non-peptide compounds present in spider venom and represent a promising alternative in the search for new molecules with antimicrobial action. Methods: The venom of Acanthoscurria natalensis spider was fractionated by reverse-phase liquid chromatography (RP-HPLC) and the antimicrobial activity of the fractions was tested using a liquid growth inhibition assay. The main antimicrobial fraction containing acylpolyamines (ApAn) was submitted to two additional chromatographic steps and analyzed by MALDI-TOF. Fractions of interest were accumulated for ultraviolet (UV) spectroscopy and ESI-MS/MS analysis and for minimum inhibitory concentration (MIC) and hemolytic activity determination. Results: Five acylpolyamines were isolated from the venom with molecular masses between 614 Da and 756 Da, being named ApAn728, ApAn614a, ApAn614b, ApAn742 and ApAn756. The analysis of UV absorption profile of each ApAn and the fragmentation pattern obtained by ESI-MS/MS suggested the presence of a tyrosyl unit as chromophore and a terminal polyamine chain consistent with structural units PA43 or PA53. ApAn presented MIC between 128 µM and 256 µM against Escherichia coli and Staphylococcus aureus, without causing hemolysis against mouse erythrocytes. Conclusion: The antimicrobial and non-hemolytic properties of the analyzed ApAn may be relevant for their application as possible therapeutic agents and the identification of an unconventional chromophore for spider acylpolyamines suggests an even greater chemical diversity.(AU)


Subject(s)
Animals , Spider Venoms/toxicity , Staphylococcus aureus , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Escherichia coli , Anti-Infective Agents
3.
J. venom. anim. toxins incl. trop. dis ; 28: 20210034, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1365076

ABSTRACT

The word venomics was coined to acknowledge the studies that use omics to investigate venom proteins and peptides. Venomics has evolved considerably over the last 20 years. The first works on scorpion or spider venomics were published in the early 2000's. Such studies relied on peptide mass fingerprinting (PMF) to characterize venom complexity. After the introduction of new mass spectrometers with higher resolution, sensitivity and mass accuracy, and the next-generation nucleotide sequencing, the complexity of data reported in research on scorpion and spider venomics increased exponentially, which allowed more comprehensive studies. In the present review article, we covered key publications on scorpion venomics and spider venomics, presenting historical grounds and implemented technologies over the last years. The literature presented in this review was selected after searching the PubMed database using the terms "(scorpion venom) AND (proteome)" for scorpion venomics, and "(spider venom) AND (proteome)" for publications on spider venomics. We presented the key aspects related to proteomics in the covered papers including, but not restricted to, the employed proteomic strategy (i.e., PMF, two-dimensional gel electrophoresis, shotgun/bottom-up and/or top-down/peptidome), and the type of mass spectrometer used. Some conclusions can be drawn from the present study. For example, the scorpion genus Tityus is the most studied concerning venomics, followed by Centruroides; whereas for spiders the studied genera were found more equally distributed. Another interesting conclusion is the lack of high throughput studies on post-translational modifications (PTMs) of scorpion and spider proteins. In our opinion, PTMs should be more studied as they can modulate the activity of scorpion and spider toxins.(AU)


Subject(s)
Animals , Arthropod Venoms , Scorpion Venoms , Spider Venoms , Toxicology , Proteome
4.
J. venom. anim. toxins incl. trop. dis ; 28: e20210042, 2022. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1360568

ABSTRACT

Spider venoms induce different physio-pharmacological effects by binding with high affinity on molecular targets, therefore being of biotechnological interest. Some of these toxins, acting on different types of ion channels, have been identified in the venom of spiders of the genus Phoneutria, mainly from P. nigriventer. In spite of the pharmaceutical potential demonstrated by P. nigriventer toxins, there is limited information on molecules from venoms of the same genus, as their toxins remain poorly characterized. Understanding this diversity and clarifying the differences in the mechanisms of action of spider toxins is of great importance for establishing their true biotechnological potential. This prompted us to compare three different venoms of the Phoneutria genus: P. nigriventer (Pn-V), P. eickstedtae (Pe-V) and P. pertyi (Pp-V). Methods: Biochemical and functional comparison of the venoms were carried out by SDS-PAGE, HPLC, mass spectrometry, enzymatic activities and electrophysiological assays (whole-cell patch clamp). Results: The employed approach revealed that all three venoms had an overall similarity in their components, with only minor differences. The presence of a high number of similar proteins was evident, particularly toxins in the mass range of ~6.0 kDa. Hyaluronidase and proteolytic activities were detected in all venoms, in addition to isoforms of the toxins Tx1 and Tx2-6. All Tx1 isoforms blocked Nav1.6 ion currents, with slight differences. Conclusion: Our findings showed that Pn-V, Pe-V and Pp-V are highly similar concerning protein composition and enzymatic activities, containing isoforms of the same toxins sharing high sequence homology, with minor modifications. However, these structural and functional variations are very important for venom diversity. In addition, our findings will contribute to the comprehension of the molecular diversity of the venoms of the other species from Phoneutria genus, exposing their biotechnological potential as a source for searching for new active molecules.(AU)


Subject(s)
Animals , Mass Spectrometry/instrumentation , Spider Venoms/analysis , Spiders , Protein Isoforms/biosynthesis , Hyaluronoglucosaminidase , Pharmaceutical Preparations
5.
Rev. patol. trop ; 51(1): 1-16, 2022.
Article in English | LILACS | ID: biblio-1410979

ABSTRACT

Spider envenomation, generically known as arachnidism, is described in many places around the world. In terms of medical importance, the following genera of animals stand out as the main origin of the morbid condition: Atrax (Sidney funnel web spider), Steatoda (false black widow), Latrodectus (black widow), Loxosceles (brown spider) and Phoneutria (armed spider), the last three causing accidents involving spiders in Brazil. This article, part 1 of 2, aims to present the main aspects of arachnidism in the country, with an emphasis on the biology and geographical distribution of spiders, biochemistry of the venom, pathogenesis and epidemiology of arachnidism, as well as prevention of the morbid condition.


Subject(s)
Spider Bites , Spider Venoms , Spiders , Venoms
6.
Rev. patol. trop ; 51(1): 17-30, 2022.
Article in English | LILACS | ID: biblio-1410981

ABSTRACT

Arachnidism, spider envenomation, is an important public health issue in different parts of the world. Its clinical evolution depends on the genus involved. Symptoms and signs range from skin alterations to systemic manifestations. The success of treatment, consisting of serotherapy and other measures, depends on the patient's immediate care. In addition to the potential injury to human hosts, spider venom has been investigated for the therapy of various diseases. Based on these considerations, this article, part 2 of 2, aims to present the main aspects of spider accidents, focusing on clinical findings, diagnosis, differential diagnosis and treatment, as well as highlighting the potential of the venom of these arachnids.


Subject(s)
Spider Bites , Spider Venoms , Spiders , Venoms , Wounds and Injuries
7.
Rev. méd. Chile ; 149(5): 682-688, mayo 2021. tab
Article in Spanish | LILACS | ID: biblio-1389519

ABSTRACT

Background: Loxoscelism is an important public health problem in Chile and South America, due to the higher rate of cutaneous-visceral involvement. The diagnosis of loxoscelism is mostly clinical without established diagnostic criteria. There is little evidence to support any treatment used in this condition. Aim: To characterize the clinical features and epidemiology of loxoscelism among patients consulting at the Emergency and Dermatology Services of a clinical hospital between 2013 and 2017. Material and Methods: Review of medical records of patients registered in the electronic clinical record system with a confirmed diagnosis of loxoscelism. Epidemiological, clinical, laboratory tests and treatment variables were analyzed. Results: We reviewed data from 200 patients. Ninety-four percent presented cutaneous loxoscelism and 5.5% cutaneous-visceral loxoscelism. Systemic symptoms were present in 73% of patients with cutaneous-visceral loxoscelism. Patients who developed systemic symptoms had an 18 times higher risk of developing cutaneous-visceral loxoscelism. Laboratory abnormalities were more common in patients with cutaneous-visceral loxoscelism. Not all patients with hematuria had cutaneous-visceral loxoscelism. Most patients required analgesia. Anti-loxosceles serum was not used in any patient. Conclusions: Many questions remain to be answered regarding the diagnosis and treatment of the disease. Studies are required to validate diagnostic criteria for loxoscelism, predictors for visceral involvement and response to treatment.


Subject(s)
Humans , Animals , Spider Bites/diagnosis , Spider Bites/therapy , Spider Bites/epidemiology , Spider Venoms , Spiders , Pain , Chile/epidemiology
8.
Philippine Journal of Health Research and Development ; (4): 36-48, 2021.
Article in English | WPRIM | ID: wpr-987214

ABSTRACT

@#Spider venoms and toxins are valuable sources of lead compounds for drug development due to their essential role in cellular and physiological processes targeting various receptors. Here, we present the protein profile of the venom of Phlogiellus bundokalbo, an endemic Philippine tarantula, to screen and characterize its cytotoxicity against MCF-7 cells, secretory phospholipase a2 (sPLA2), and neurotoxicity to evaluate its potential anticancer properties. Spider venom was extracted via electrical stimulation. Venom components were fractionated by reversed-phase high-performance liquid chromatography and characterized through liquid chromatography-mass spectrometry (LC-MS) and SDS-PAGE analysis before assay. The resulting five venom fractions were amphiphilic peptides showing cytotoxicity against MCF-7 cells in a concentrationdependent manner (IC50 ranging from 52.25μg/ml to 110.20μg/ml) after 24-hour incubation. Cells appeared detached, rounded, and shrunk with cytoplasmic condensation upon overnight incubation with venom fractions. The sPLA2 was observed in all the venom fractions tested for cytotoxicity. Venom fractions revealed a predominant mass of ~3-5 kDa with LC-MS analysis. Results showed distinct similar mass as μ- theraphotoxin-Phlo1a, an Australian tarantula, Phlogiellus sp. toxin with inhibitor cystine knot motif. The venom fractions exhibit excitatory neurotoxins that might activate presynaptic voltage-gated ion channels, such as an agonist or gating modifier toxins that slow down the channel inactivation similar to spider toxins. In conclusion, the spider venom of P. bundokalbo exhibits cytotoxic, phospholipase A2, and neuroactive properties suggesting that its venom components, upon further purification and structure-function analysis, can be potential tools in the development of targeted breast chemotherapeutics.


Subject(s)
Spider Venoms , Phospholipases
9.
Chinese Journal of Biotechnology ; (12): 635-645, 2021.
Article in Chinese | WPRIM | ID: wpr-878588

ABSTRACT

One of the distinct characters of Latrodectus tredecimguttatus is that its toxic components exist not only in the venomous glands, but also in the tissues outside the venomous glands and even in the eggs. Investigation on the toxins outside the venomous glands can deepen our understanding of spider toxins and discover new lead molecules with important application prospects. In order to explore the low-abundance proteinaceous toxins in the L. tredecimguttatus eggs, we used bioinformatic strategies to mine a gene sequence encoding a peptide toxin from the transcriptome of L. tredecimguttatus eggs, and then heterologously expressed the gene successfully with a 3'-RACE combined with nest PCR strategy. Biological activity analyses indicated that the expressed peptide toxin, named latroeggtoxin-Ⅵ (LETX-Ⅵ), could inhibit Na⁺ channel currents in ND7/23 cells and promote dopamine release from PC12 cells, without obvious toxicity against Periplaneta americana and bacteria as well as fungi including Staphylococcus aureus and Candida albicans, demonstrating that LETX-Ⅵ is a mammal-specific neurotoxin with a potential application prospect in development of the tool reagents for neurobiological study and the drugs for treating related diseases.


Subject(s)
Animals , Rats , Arthropod Proteins/genetics , Black Widow Spider/genetics , Cloning, Molecular , Spider Venoms/genetics , Transcriptome
10.
J. venom. anim. toxins incl. trop. dis ; 27: e20200188, 2021. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1279408

ABSTRACT

Accidents caused by the bites of brown spiders (Loxosceles) generate a clinical condition that often includes a threatening necrotic skin lesion near the bite site along with a remarkable inflammatory response. Systemic disorders such as hemolysis, thrombocytopenia, and acute renal failure may occur, but are much less frequent than the local damage. It is already known that phospholipases D, highly expressed toxins in Loxosceles venom, can induce most of these injuries. However, this spider venom has a great range of toxins that probably act synergistically to enhance toxicity. The other protein classes remain poorly explored due to the difficulty in obtaining sufficient amounts of them for a thorough investigation. They include astacins (metalloproteases), serine proteases, knottins, translationally controlled tumor proteins (TCTP), hyaluronidases, allergens and serpins. It has already been shown that some of them, according to their characteristics, may participate to some extent in the development of loxoscelism. In addition, all of these toxins present potential application in several areas. The present review article summarizes information regarding some functional aspects of the protein classes listed above, discusses the directions that could be taken to materialize a comprehensive investigation on each of these toxins as well as highlights the importance of exploring the full venom repertoire.(AU)


Subject(s)
Animals , Spider Venoms/toxicity , Spiders , Serpins , Serine Proteases , Bites and Stings
11.
J. venom. anim. toxins incl. trop. dis ; 27: e20210009, 2021. tab, graf, ilus, mapas
Article in English | LILACS, VETINDEX | ID: biblio-1279406

ABSTRACT

Spider venom is a rich cocktail of neuroactive compounds designed to prey capture and defense against predators that act on neuronal membrane proteins, in particular, acetylcholinesterases (AChE) that regulate synaptic transmission through acetylcholine (ACh) hydrolysis - an excitatory neurotransmitter - and beta-secretases (BACE) that primarily cleave amyloid precursor proteins (APP), which are, in turn, relevant in the structural integrity of neurons. The present study provides preliminary evidence on the therapeutic potential of Phlogiellus bundokalbo venom against neurodegenerative diseases. Methods Spider venom was extracted by electrostimulation and fractionated by reverse-phase high-performance liquid chromatography (RP-HPLC) and characterized by matrix-assisted laser desorption ionization-time flight mass spectrometry (MALDI-TOF-MS). Neuroactivity of the whole venom was observed by a neurobehavioral response from Terebrio molitor larvae in vivo and fractions were screened for their inhibitory activities against AChE and BACE in vitro. Results The whole venom from P. bundokalbo demonstrated neuroactivity by inducing excitatory movements from T. molitor for 15 min. Sixteen fractions collected produced diverse mass fragments from MALDI-TOF-MS ranging from 900-4500 Da. Eleven of sixteen fractions demonstrated AChE inhibitory activities with 14.34% (± 2.60e-4) to 62.05% (± 6.40e-5) compared with donepezil which has 86.34% (± 3.90e-5) inhibition (p > 0.05), while none of the fractions were observed to exhibit BACE inhibition. Furthermore, three potent fractions against AChE, F1, F3, and F16 displayed competitive and uncompetitive inhibitions compared to donepezil as the positive control. Conclusion The venom of P. bundokalbo contains compounds that demonstrate neuroactivity and anti-AChE activities in vitro, which could comprise possible therapeutic leads for the development of cholinergic compounds against neurological diseases.(AU)


Subject(s)
Animals , Acetylcholinesterase , Spider Venoms/toxicity , Neurotransmitter Agents , Neurodegenerative Diseases , In Vitro Techniques
12.
J. venom. anim. toxins incl. trop. dis ; 27: e20210011, 2021. tab, graf, mapas, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1346438

ABSTRACT

Humankind has always been fascinated by venomous animals, as their toxic substances have transformed them into symbols of power and mystery. Over the centuries, researchers have been trying to understand animal venoms, unveiling intricate mixtures of molecules and their biological effects. Among venomous animals, Latrodectus Walckenaer, 1805 (widow spiders) have become feared in many cultures worldwide due to their extremely neurotoxic venom. The Latrodectus genus encompasses 32 species broadly spread around the globe, 14 of which occur in the Americas. Despite the high number of species found in the New World, the knowledge on these spiders is still scarce. This review covers the general knowledge on Latrodectus spp. from the Americas. We address widow spiders' taxonomy; geographical distribution and epidemiology; symptoms and treatments of envenomation (latrodectism); venom collection, experimental studies, proteome and transcriptome; and biotechnological studies on these Latrodectus spp. Moreover, we discuss the main challenges and limitations faced by researchers when trying to comprehend this neglected group of medically important spiders. We expect this review to help overcome the lack of information regarding widow spiders in the New World.(AU)


Subject(s)
Animals , Spider Venoms/toxicity , Spiders , Black Widow Spider , Nerve Agents
13.
J. venom. anim. toxins incl. trop. dis ; 27: e20210004, 2021. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1351020

ABSTRACT

The Theraphosidae family includes the largest number of species of the Mygalomorphae infraorder, with hundreds of species currently catalogued. However, there is a huge lack on physiologic and even ecologic information available, especially in Brazil, which is the most biodiverse country in the world. Over the years, spiders have been presented as a source of multiple biologically active compounds with basic roles, such as primary defense against pathogenic microorganisms or modulation of metabolic pathways and as specialized hunters. Spider venoms also evolved in order to enable the capture of prey by interaction with a diversity of molecular targets of interest, raising their pharmaceutical potential for the development of new drugs. Among the activities found in compounds isolated from venoms and hemocytes of Brazilian Theraphosidae there are antimicrobial, antifungal, antiparasitic and antitumoral, as well as properties related to proteinase action and neuromuscular blockage modulated by ionic voltage-gated channel interaction. These characteristics are present in different species from multiple genera, which is strong evidence of the important role in spider survival. The present review aims to compile the main results of studies from the last decades on Brazilian Theraphosidae with special focus on results obtained with the crude venom or compounds isolated from both venom and hemocytes, and their physiological and chemical characterization.(AU)


Subject(s)
Animals , Peptide Hydrolases , Spider Venoms , Spiders , Hemocytes , Antiparasitic Agents , Pharmaceutical Preparations
14.
J. venom. anim. toxins incl. trop. dis ; 27: e20210026, 2021. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1351023

ABSTRACT

Pain is a common symptom induced during envenomation by spiders and scorpions. Toxins isolated from their venom have become essential tools for studying the functioning and physiopathological role of ion channels, as they modulate their activity. In particular, toxins that induce pain relief effects can serve as a molecular basis for the development of future analgesics in humans. This review provides a summary of the different scorpion and spider toxins that directly interact with pain-related ion channels, with inhibitory or stimulatory effects. Some of these toxins were shown to affect pain modalities in different animal models providing information on the role played by these channels in the pain process. The close interaction of certain gating-modifier toxins with membrane phospholipids close to ion channels is examined along with molecular approaches to improve selectivity, affinity or bioavailability in vivo for therapeutic purposes.(AU)


Subject(s)
Animals , Pain , Scorpions , Spider Venoms , Models, Animal , Ion Channels , Phospholipids , Analgesics
15.
J. venom. anim. toxins incl. trop. dis ; 26: e20190043, 2020. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1135134

ABSTRACT

The tarantula Chilobrachys jingzhao is one of the largest venomous spiders in China. In previous studies, we purified and characterized at least eight peptides from C. jingzhao venom. In this report, we describe the purification and characterization of Jingzhaotoxin-X (JZTX-X), which selectively blocks Kv4.2 and Kv4.3 potassium channels. Methods: JZTX-X was purified using a combination of cation-exchange HPLC and reverse-phase HPLC. The amino-acid sequence was determined by automated Edman degradation and confirmed by mass spectrometry (MS). Voltage-gated ion channel currents were recorded in HEK293t cells transiently transfected with a variety of ion channel constructs. In addition, the hyperalgesic activity of JZTX-X and the toxin´s effect on motor function were assessed in mice. Results: JZTX-X contained 31 amino acids, with six cysteine residues that formed three disulfide bonds within an inhibitory cysteine knot (ICK) topology. In whole-cell voltage-clamp experiments, JZTX-X inhibited Kv4.2 and Kv4.3 potassium channels in a concentration- and voltage-dependent manner, without affecting other ion channels (Kv1.1, 1.2, 1.3, 2.1, delayed rectifier potassium channels, high- and low-voltage-activated Ca2+ channels, and voltage-gated sodium channels Nav1.5 and 1.7). JZTX-X also shifted the voltage-dependent channel activation to more depolarized potentials, whereas extreme depolarization caused reversible toxin binding to Kv4.2 channels. JZTX-X shifted the Kv4.2 and Kv4.3 activities towards a resting state, since at the resting potential the toxin completely inhibited the channels, even in the absence of an applied physical stimulus. Intrathecal or intraplantar injection of JZTX-X caused a long-lasting decrease in the mechanical nociceptive threshold (hyperalgesia) but had no effect on motor function as assessed in the rotarod test. Conclusions: JZTX-X selectively suppresses Kv4.2 and Kv4.3 potassium channel activity in a concentration- and voltage-dependent manner and causes long-lasting mechanical hyperalgesia.(AU)


Subject(s)
Animals , Spider Venoms , Spiders , Shal Potassium Channels
16.
J. venom. anim. toxins incl. trop. dis ; 26: e20200031, 2020. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1135135

ABSTRACT

PnPa11 and PnPa13 are synthetic peptides derived from Phoneutria nigriventer spider venom, which display antinociceptive and neuroprotective properties. In this work, we evaluated the safety of intravitreal use and the neuroprotective effect of these peptides. Methods: The cytotoxicity and the antiangiogenic activity of these peptides were evaluated by the sulforhodamine-B method and chicken chorioallantoic membrane (CAM) assay, respectively. The in vivo safety was analyzed in Wistar rats that were intravitreally injected with different doses (0.50; 1.25; 2.50; 3.75 and 5.00 µg/mL) of these peptides (right eye, n = 6). The retinal function was assessed by electroretinography exams (ERG), intraocular pressure (IOP), and histological analyzes. In order to investigate the neuroprotective effect, Wistar rats received intravitreal injections (right eye, n = 6) of peptides at 1.25 µg/mL and then were exposed to blue LED light. In addition, the visual function and the retinal microstructure were verified. Results: Cytotoxicity analyses demonstrated that the peptides did not present any toxicity over ARPE-19 (adult retinal pigmented epithelial) cell line and the antiangiogenic study highlighted that the peptides promoted the reduction of blood vessels. The intravitreal injection did not cause major changes, neither induced any irreversible damage. In the retinal degeneration assay, the ERG records demonstrated that the prior treatment with PnPa11 and PnPa13 protected the retina from damage. Morphological analyses confirmed the ERG findings. Immunoblotting analyses revealed that PnPa11 increased Erk1/2, NR2A, and NR2B retinal expression after the light stress model, but did not cause Akt1 activation, while PnPa13 prevented Erk1/2 and Akt1 dephosphorylation. Conclusions: The intraocular administration of these peptides was well tolerated and presented protective activity against retinal degeneration, suggesting the potential use of these peptides as neuroprotectors in the ophthalmological field.(AU)


Subject(s)
Animals , Peptides , Spider Venoms , Intravitreal Injections , Spiders , Analgesics
17.
J. venom. anim. toxins incl. trop. dis ; 26: e20190104, 2020. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1135148

ABSTRACT

Spider venom is a potential source of pharmacologically important compounds. Previous studies on spider venoms reported the presence of bioactive molecules that possess cell-modulating activities. Despite these claims, sparse scientific evidence is available on the cytotoxic mechanisms in relation to the components of the spider venom. In this study, we aimed to determine the cytotoxic fractions of the spider venom extracted from Phlogiellus bundokalbo and to ascertain the possible mechanism of toxicity towards human lung adenocarcinoma (A549) cells. Methods: Spider venom was extracted by electrostimulation. Components of the extracted venom were separated by reversed-phase high performance liquid chromatography (RP-HPLC) using a linear gradient of 0.1% trifluoroacetic acid (TFA) in water and 0.1% TFA in 95% acetonitrile (ACN). Cytotoxic activity was evaluated by the MTT assay. Apoptotic or necrotic cell death was assessed by microscopic evaluation in the presence of Hoechst 33342 and Annexin V, Alexa FluorTM 488 conjugate fluorescent stains, and caspase activation assay. Phospholipase A2 (PLA2) activity of the cytotoxic fractions were also measured. Results: We observed and isolated six fractions from the venom of P. bundokalbo collected from Aurora, Zamboanga del Sur. Four of these fractions displayed cytotoxic activities. Fractions AT5-1, AT5-3, and AT5-4 were found to be apoptotic while AT5-6, the least polar among the cytotoxic components, was observed to induce necrosis. PLA2 activity also showed cytotoxicity in all fractions but presented no relationship between specific activity of PLA2 and cytotoxicity. Conclusion: The venom of P. bundokalbo spider, an endemic tarantula species in the Philippines, contains components that were able to induce either apoptosis or necrosis in A549 cells.(AU)


Subject(s)
Animals , Spider Venoms/pharmacology , Apoptosis , Adenocarcinoma of Lung , Cytotoxicity, Immunologic
18.
J. venom. anim. toxins incl. trop. dis ; 26: e20190070, 2020. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1484764

ABSTRACT

Background: Intrathecal injection of voltage-sensitive calcium channel blocker peptide toxins exerts analgesic effect in several animal models of pain. Upon intrathecal administration, recombinant Phα1β exerts the same analgesic effects as the those of the native toxin. However, from a clinical perspective, the intrathecal administration limits the use of anesthetic drugs in patients. Therefore, this study aimed to investigate the possible antinociceptive effect of intravenous recombinant Phα1β in rat models of neuropathic pain, as well as its side effects on motor, cardiac (heart rate and blood pressure), and biochemical parameters. Methods: Male Wistar rats and male Balb-C mice were used in this study. Giotto Biotech® synthesized the recombinant version of Phα1β using Escherichia coli expression. In rats, neuropathic pain was induced by chronic constriction of the sciatic nerve and paclitaxel-induced acute and chronic pain. Mechanical sensitivity was evaluated using von Frey filaments. A radiotelemeter transmitter (TA11PA-C10; Data Sciences, St. Paul, MN, USA) was placed on the left carotid of mice for investigation of cardiovascular side effects. Locomotor activity data were evaluated using the open-field paradigm, and serum CKMB, TGO, TGP, LDH, lactate, creatinine, and urea levels were examined. Results: Intravenous administration of recombinant Phα1β toxin induced analgesia for up to 4 h, with ED50 of 0.02 (0.01-0.03) mg/kg, and reached the maximal effect (Emax = 100% antinociception) at a dose of 0.2 mg/kg. No significant changes were observed in any of the evaluated motor, cardiac or biochemical parameters. Conclusion: Our data suggest that intravenous administration of recombinant Phα1β may be feasible for drug-induced analgesia, without causing any severe side effects.


Subject(s)
Male , Animals , Rats , Analgesics , Sciatic Neuropathy/therapy , Paclitaxel , Toxins, Biological/administration & dosage , Toxins, Biological/adverse effects , Spider Venoms/chemistry , Administration, Intravenous , Mice, Inbred BALB C , Rats, Wistar
19.
J. venom. anim. toxins incl. trop. dis ; 26: e20190075, 2020. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1101266

ABSTRACT

Phoneutria nigriventer spider venom contains several cysteine-rich peptide toxins that act on different ion channels. Despite extensive studies on its venom and description of cDNA sequences of several of its toxin precursors, the gene structure of these toxins remains unknown. Methods: Genomic regions encoding the precursors of three previously characterized P. nigriventer toxins - PnTx1, PnTx2-5 and PnTx4(5-5) - were amplified by PCR using specific primers. PCR fragments were cloned and sequenced. Obtained sequences were compared with their corresponding cDNA sequences. Results: The size of PCR fragments obtained and sequences corresponding to genomic regions encoding for the toxin precursors matched their cDNA sequences. Conclusions: Despite a few nucleotide substitutions in the genomic regions encoding for the toxin precursors when compared with cDNA sequences, the results of the present work indicate that P. nigriventer toxins do not contain introns in their genes sequences.(AU)


Subject(s)
Animals , Spider Venoms , Introns , Polymerase Chain Reaction , Sequence Analysis , Cysteine , Nucleotides
20.
Journal of Southern Medical University ; (12): 1192-1199, 2020.
Article in Chinese | WPRIM | ID: wpr-828921

ABSTRACT

OBJECTIVE@#To explore the effects of aerobic exercise combined with huwentoxin-I (HWTX-I)-mediated Keap1-Nrf2-ARE pathway on phase II detoxification enzymes HO-1 and NQO1 and their protective effects against obstructive jaundice (OJ)-induced central nervous system injury in mice.@*METHODS@#50 male KM mice were randomly divided into blank group (GO), model group (M), aerobic exercise group (T), HWTX-I group (H), and aerobic exercise combined with HWTX-I group (TH). Mouse models of OJ were established with surgical suture for 72 h in the mice in all the groups except for the blank control group. The mice received interventions by aerobic exercise and tail vein injection of HWTX-I (0.05 μg/g) and were assessed by behavioral observation, Clark's neurological function scores, enzyme-linked immunosorbent assay (ELISA), brain tissue Nissl staining, hippocampal tissue Western blotting, and liver tissue mRNA expression profiling and sequencing.@*RESULTS@#The mice in group M had obvious jaundice symptoms after the operation with significantly increased Clark's neurological score ( < 0.01). Compared with those in group M, the mice in group T, group H, and group TH showed significantly decreased serum levels of ALT, AST, TBIL, and TBA ( < 0.01) with increased contents of 5-HT and BDNF and decreased contents of S100B and NSE in the hippocampus ( < 0.01). Synergistic effects between aerobic exercise and HWTX-I were noted on the above parameters except for the liver function indicators. Interventions with aerobic exercise and HWTX-I, alone or in combination, obviously lessened pathologies in the brain tissue induced by OJ, and the combined treatment produced the strongest effect. The treatment also increased the expression levels of Nrf2, HO-1, and NQO1 mRNA and protein in brain tissues ( < 0.01 or 0.05) with a synergistic effect between aerobic exercise and HWTX-I. Illumina high-throughput sequencing showed that the differentially expressed factors participated mainly in such neural regulatory pathways as neuroactive ligand-receptor interaction, GABAergic synapses, dopaminergic synapses, synaptic vesicle circulation, and axon guidance, involving tissue cell neuronal signal transduction, apoptosis inhibition, immune response, and toxicity. Aerobic exercise and HWTX-I synergistically increased the accumulation of the signal pathways related with neuron damage repair and proliferation.@*CONCLUSIONS@#Aerobic exercise combined with HWTX-I can up-regulate the expression of phase Ⅱ detoxification enzymes HO-1 and NQO1 through the Keap1-Nrf2-ARE pathway to protect the central nervous system against OJ-induced damage in mice.


Subject(s)
Animals , Male , Mice , Jaundice, Obstructive , Kelch-Like ECH-Associated Protein 1 , Metabolic Detoxication, Phase II , NF-E2-Related Factor 2 , Physical Conditioning, Animal , Reptilian Proteins , Spider Venoms , Trauma, Nervous System
SELECTION OF CITATIONS
SEARCH DETAIL